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For small departures from super-symmetry, commonly encountered among the structures of 
inorganic compounds, it is shown that a solution may be obtained from the anti-symmetrical 
component of the Patterson synthesis. This AP function is evaluated with only those reflections 
which are forbidden by the super-group. An outline is given of the properties of the AP function and 
the corresponding anti-symmetric Fourier synthesis. An illustrative example is taken from the 
structure determination of conichalcite. 

1. Introduct ion 

The problem of pseudo-symmetry often occurs in the 
course of structure determinations where the structure 
approximates to a higher symmetry than that  en- 
visaged by the proper space group. I t  can be of two 
main types, (a) where the extra pseudo-symmetry 
places the atoms in a higher space group that  produces 
(or simulates) additional absences e.g. the positions 
on one of the screw axes or with one coordinate 
halfway between a pair of parallel screw axes in 
P212121, and (b) where the higher space group is not 
distinguished by any additional absences. Examples 
of the latter are (i) the apparent centre of symmetry 
contributed by a nearly centro-symmetric molecular 
arrangement, and (ii) the ambiguity arising from small 
possible displacements of light atoms resulting in a 
lowering of the crystallographic symmetry from a 
centro-symmetrical space group to a non-centro- 
symmetrical one with the same diffraction symmetry, 
and presumably undetected by physical methods such 
as a positive piezo- or pyro-electric effect. 

Pseudo-symmetry of type (a) is frequently shown 
by inorganic structures, where the metal atoms may 
be in (or near) the higher-symmetry positions, with 
the oxygen and other light atoms displaced towards 
the lower-symmetry positions, and it is often extremely 
difficult to determine the precise extent and directions 
of these displacements, because mathematically they 
occur in a region of zero gradient in a least-squares 
or equivalent Fourier treatment. For the complete 
solution of such structures, it seems logical to utilize 
a Patterson component based on those weak low- 
symmetry reflections that  would disappear in the 
super-symmetrical arrangement, and which will form 
an anti-symmetric component of the normal Patterson 
function. If we consider an orthogonal 0kl Patterson 
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projection in P212121, for example, it is readily seen 
that  whereas the reflections with k + / = e v e n  give a 
Patterson map symmetrical about a 2-fold axis (lla) 
through ( - ,  ~, ¼), the map for the reflections with 
k + / = o d d  is anti-symmetric about this axis. The 
actual total Patterson map will consist of the sum of 
the two, so that  we may think of any particular 
Patterson interaction peak, Ptotal, as composed of a 
symmetric interaction, Psym., and an anti-symmetric 
component, (AP), this latter being very much smaller 
in the type of case being considered here. Thus, in 
general, 

P~tax = Psym. + (AP) (1) 

and Psym. will lead to atomic positions with the super 
symmetry, while the analysis of the A P peaks will 
yield quantitative estimates of the actual departures 
from these positions of higher symmetry. This analysis 
being in some respects similar to that  for a (@o-@c) 
difference Fourier, it may conceivably be advantageous 
in other cases also to separate the two Patterson 
components of equation (1). 

2. I l lustrat ive  e x a m p l e  

For developing the theory, we take as an illustrative 
example the space group Pnma as a super-symmetrical 
group of the common P212121, as occurs in the struc- 
tures of the descloizite and adelite series of minerals 
(Qurashi & Barnes, 1954; Donaldson & Barnes, 1955). 
Conichalcite, CuCa(AsOd)OH, a typical arsenate of 
this series, would be placed in the group Pnma, except 
for the presence of 8 weak 0kl reflections with k + l=  
odd and 9 very weak h/c0 reflections with h=odd,  
and the metal atoms in the approximate structure in 
Pnma symmetry proposed earlier (Qurashi & Barnes, 
1954) are shown schematically in the (100) projection 
of Fig. l(a). Consider only the calcium atoms, indicated 
by the large solid circles; their x and z-coordinates 
are not restricted by the higher symmetry (Pnma), 
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Fig. I. Schematic representation of the relationship between the actual _P212121, and the super-synxmetric Pnma, Patterson 
0/el maps for the calcium atoms in conichalcite, CaCu(AsO4)(OH); (a) Pnma structure projection of calcium (large circles), 
copper (small circles), arsenic (triangles), the arrows indicating small anti-symmetric displacements of calcium atoms only; 
(b) actual P212121 Patterson map for calcium only; (c) corresponding super-s3~mmetrie Pnma map; (d) left, corresponding 
anti-symmetric component (zero contour, chain line) and, right, cross-section along the line b-b' or along the b-axis through 
the origin. 

but  y is limited to Jr ¼, whereas in the actual P212121 
symmetry,  y is also free to take any value. The per- 
missible small displacements of the calcium atom are 
shown by the arrows in Fig. l(a), and the idealized 
Patterson maps for the actual calcium positions only 
and for the averaged positions in Pnma symmetry  
are indicated schematically in Fig. l(b) and l(c), 
respectively. The left-hand half of Fig. l(d) shows 
schematically the difference between the two maps, 
which corresponds to the anti-symmetric par t  of the 
Patterson synthesis referred to above, and it  is at once 
seen tha t  the contiguous +posit ive and - n e g a t i v e  
peaks in such a difference Patterson are somewhat 
similar to the corresponding peaks obtained in a 
(~0-~e) difference Fourier map. We c~n see that in 
Fig. l(d) the line (e.g. bb') joining the corresponding 
maxima and minima is parallel to the displacements, 
the magnitude of which for the simple case of the 
calcium displacements is approximately proportional 
to the square root of the peak heights. This is generally 
true, and the detailed theory follows. 

3. Basic mathematical analysis 

In  this example, the calcium atom introduces a special 
value for only one coordinate, and is thus very suitable 

for discussion. Let the coordinates of the calcium 
atoms in Pnma symmetry  be ( - ,  ¼, z') and let the 
displacements from this position be A, parallel to the 
y-axis, cf. Fig. l(a). Then the actual coordinates in 
P212121 symmetry  (plane group pgg) are ( - ,  ¼-  3/b, z'), 
etc., so tha t  (International Tables for X-ray Crystallo- 
graphy, 1952) 

IF<o,~,l ~ -- [ 4 f  cos 2 ~ { ( b  + 1)14 + l(¼- ~'lc)} 
x cos2z~{(k+l)/4-k(A/b)}] 2 (2) 

= [4 f  cos 2~zl(¼- z'/c) cos 2:~k(/1/5)] 2 

and for /c + 1 = even 

= [ 4 f  sin 2~z/(¼-z'/c)sin 2:~/c(A/b)]~ 

whence for k + 1 = odd 

IFsym. ]2 = 16re cos 2 2gl(¼- z'/c) cos 2 2:~k(A/b) , (3a) 

and 

]Fantisym. 12= 16f 2 sin e 2:~l(¼-z'/c) sin 2 2~k(A/b),  (35) 

with corresponding expressions for the symmetrical  
and anti-symmetrical components of the Pat terson 
synthesis. Equation 3(a) shows tha t  the symmetric  
Patterson map will correspond to the mean of two 
atoms, one displaced + A parallel to the y-axis and 
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the other displaced through - / 1 .  (When /1=0,  
equations (3) clearly correspond to a s tat ionary value 
for Fsym. and zero value for Fantlsym..) From equation 
(3(b)), the expression for the anti-symmetric Patter-  
son is 

A P ( - ,  y, z) = 22 22 16f e sin" 2~l(¼-z'/c) sin e 2zlc(A/b) 
z x cos 2~(k. y/b + 1. z/c) 

= 22 (sin (2~k./1/b)/2~k(/1/b)}'(2~k./1/b)' 22 8f 2 
k l 

x [ 1 - c o s  2~l(½-2.z'/c)] cos 2z(k.y/b+l.z/c) (4) 

which will give maxima and minima at  ( - ,  0, 0) and 
( - ,  0, ½-2z'/c), together with other symmetrically 
located points by applying the usual mathematical  
analysis for the Pat terson function (James, 1948). 
Along the line z = 0, we get 

/ 1 P ( - ,  y, O)= .~' (sin (2~k.A/b)/2~k(/1/b)}e(2~lc./1/b) e 
k 

x cos 2zk(y/b) 22 8f' 
l 

[1 - cos 2~/(½- 2. z'/c)] 

= 2 2 8 ( 2 , f  2) (sin (2nk./1/b)/2nk(/1/b)} ~ 
k l 

× (2~k. A/b) 2 cos 27~k(y/b) (5) 

because the quant i ty  in the square brackets in the 
last factor will average out to unity. 

A graph of the function represented by equation (5) 
for small/1 is drawn against y (in Jk), in the right-hand 
half of Fig. l(d), and is seen to be a maximum at 
y = 0 ,  becoming zero at  y ~ 0.4 A and attaining a 
negative minimum at  y ~ 0.6 A. The ratio of the 
depth of the trough to the height of the maximum is 
nearly 0.55. In  contrast ,  i t  can be shown tha t  
/ 1 P ( - ,  0, z) falls uniformly to zero as z increases, 
so tha t  the contours near the origin resemble the 
(@o-@,) map for a pair of atoms with a thermal 
anisotropy (or else only a slight separation) parallel 
to y. Using equation (4), it can further be shown tha t  
the contours in the neighbourhood of the point 
( - ,  O, ½-2z'/c) have a similar distribution (Fig. l(d) 
left), but with a negative minimum at this particular 
point;  this negative 'peak' corresponds to the inter- 
action between the opposite displacements, +/1 and 
- / 1 ,  of the two atoms with y=¼ in Fig. l(a). In 
three dimensions, it can readily be seen tha t  the 
contours of the AlP peaks will show cylindrical 
symmetry  about the direction (bb' in Fig. l(d)) of the 
anti-symmetrical displacements of the set of atoms 
being considered. 

4. S o m e  p r o p e r t i e s  of  the  a n t i - s y m m e t r i c  
P a t t e r s o n  f u n c t i o n  

We can now connect the peak heights (and troughs) 
in the AlP map quanti tat ively with (i) the atomic 
number Z of the atoms concerned and (ii) their small 
displacements, AI. As long as A is small enough to 

keep 2~1c/1/b < 1, we may replace the factor 
sin (2~/cAI/b)/2~k/1/b by uni ty  with sufficient accuracy, 
and obtain from equation (5), 

/ 1 P ( - ,  y, 0) = 4/1 e 22 2(2 :  fe) x. 4ze(ke/be) cos 27~ky/b 
k l 

= 4 /12Ze222(2 j  e) x 4~e(/c2/b')cos2~ky/b 
k l 

(6) 

which shows tha t  the contributions to the self- 
interaction peaks and troughs are proportional to the 
squares of the corresponding atomic displacements A 
(from the high-symmetry positions) and also approx- 
imately proportional to the square of the atomic 
number Z, since the uni tary  scattering factor f 
varies in much the same way for all the more common 
atoms. In particular, the origin peak is proportional 
to 42:(AZ) 2 summed over all the atoms, and the other 
self-interaction peaks will have appropriate mul- 
tiplicity. For a two-dimensional projection, there is 
the obvious proviso tha t  when two different atoms 
overlap closely in a projection, the effective AZ for 
the pair is the algebraic sum (A1ZI+A2Z..) with due 
regard to the signs of/11,/1... 

Similarly, when in equation (3) we consider two 
different atoms with displacements /11 and A.., i t  can 
be shown by the usual type of analysis for the Patter-  
son function (James, 1948) tha t  the peaks correspond- 
ing to interatomic vectors will be proportional to the 
product A1A.. x Z1Z.. x multiplicity, which replaces 
4/1eZ 2 in equation (6), a negative central trough being 
obtained when/11/1e is negative. For a 2- or 3-dimen- 
sional anti-symmetric Patterson map, there is then 
little difficulty in considering problems of overlap, 
but  it is necessary to remember tha t  S/1~/1eZ1Ze 
for any particular set of overlapping vectors can add 
up to zero, in which event the corresponding peaks 
(and troughs) in the /1P map will disappear. One 
consequence of this is tha t  the origin AP-peak can 
differ markedly for projections of the same structure 
along two different directions. 

Of course, when a variety of special positions is 
possible, some of them can produce components of 
displacement A in two different directions, e.g. the 
positions on one of the screw axes in P212~21. The 
corresponding peaks can then be interpreted in terms 
of these two components quite easily, this concept of 
component shifts parallel to the axes being quite 
useful in the actual analysis of a given /1P map. 

The shifts estimated from such an analysis can then 
be used to carry out an anti-symmetrical Fourier 
synthesis, using only the limited anti-symmetrical set 
of reflections, from which additional information can 
then be gleaned. A portion of an actual anti- 
symmetrical synthesis corresponding to the calcium 
displacements shown in the top left quarter of Fig. 1 (a) 
is shown in Fig. 2, and its interpretation follows tha t  
of an ordinary difference Fourier map. I t  is indeed 
quite possible tha t  such a separation of the anti- 
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Fig. 2. Part  of actual anti-symmetrical Fourier (zero contour, 
dotted) corresponding to the calcium displacements shown 
in the top left quarter of Fig. l(a). 

symmetrical component of a Fourier or Patterson map 
also may be advantageous in cases other than the 
one envisaged here, e.g. in structures showing pseudo- 
symmetry of type (b) noted in the introduction. 

5. P r a c t i c a l  a p p l i c a t i o n  

The use of the ant i -symmetr ica l  Pa t te r son  and Fourier  
functions has been very  successful in the two-dimen- 
sional ref inement  of the s t ructure  of conichalcite, 
CaCu(AsO4)OH (Qurashi & Barnes,  in the press). For  
this mineral,  only a few, relat ively weak, reflections, 

forbidden in Pnma, were observed, namely,  eight 
O/cl for which /C + l = 2n + 1, and nine h/c0 for which 
h = 2 n + l .  By ignoring these reflections, however,  
the principal features of the s t ructure  were first  
established in Pnma (Qurashi & Barnes,  1954). Small  
displacements of some of the meta l  and oxygen a toms 
from Pnma positions then were deduced from the  
A P syntheses and ant i -symmetr ica l  Fourier  syntheses 
based on da t a  for the forbidden reflections alone. 
Modification of the atomic coordinates by  these shifts 
gave immedia te  improvement  in R for all observed 
reflections in the three principal zones; for the  most  
impor tan t  zone, R was reduced from 0.22 to 0.12. 
Knowledge of these small shifts made successful 
refinement of the s t ructure  possible by s t andard  
methods in the t rue  space group P2~2~21. 
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From data  so far accumulated on three-membered heteroeyclie compounds derived by replacing 
anthracene meso CH groups by atoms A and B, it is pointed out that  molecules are planar if both 
A and B are any of C, N or O, but folded if at least one of A and B is S, Se or Te. This difference 
is explained by taking account of d orbitals in S and S-like atoms. The folding of the molecule is due 
to the 'natural '  valency angle of a S atom, as was pointed out by Lynton & Cox in the case of 
thianthrene. The folding angle is not much affected in a and fl thianthrene dioxide and thianthrene 
tetraoxide. 

Introduction 
Many kinds of three-membered heterocyclic com- 
pounds are derived if either or both of two anthracene 
meso CH groups are replaced by  other kinds of a toms 
or atomic groups. Crystal  s t ructures  of these com- 
pounds have been thoroughly or pa r t ly  analysed by 
various authors,  and enough da ta  seem to have al- 
r eady  been accumula ted  to allow us to discuss some 
essential characterist ic  features of atomic bondings in 
these  compounds. Especial ly interesting is the fact 
t h a t  some molecules are p lanar  whereas others are 

folded, and it is interesting to explain such features 
in terms of electron configuration. 

The crystal  s t ructure  of th ianthrene  was fully ana- 
lysed by X- ray  diffraction and its molecule was found 
to be folded on the S-S line, so t ha t  the two benzene 
rings lie in two planes a t  an angle of 128 ° (Lynton & 
Cox, 1956; Rowe & Post,  1958), The folded molecular 
s t ructure  was also reported for two isomers of thian- 
threne dioxide (Fig. 1, 2) (Hosoya & Wood, 1957; 
Hosoya,  1958a) and on t hianthrene te t raoxide or 
diphenylene disulphone (Fig. 3) (Hosoya, 1958b). Di- 


